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Preface: A new landscape for research
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Preface: A new landscape for research

o My research:
> Optimization
> Deep Learning

> Reinforcement Learning

o My current courses:
> Mathematics of Data
> Reinforcement Learning
> Online Learning in Games
> Advanced Topics in ML
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GenAl as an example
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GenAl as an example

lions@epfl Rethinking adversarial training | Volkan Cevher; volkan.cevher@epfl.ch

Slide 4/ 42



Let’s work backwards with GenAl as a running example

o What do customers want?

Quusrier
9@//\ GENIYATS N
G@ < =

o What do customers care about?
> Response speed (inference), availability, cost...
> Quality of the answers (correct, fair, unbiased, aligned, robust,...)

> Personalization, privacy,...
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The loop now works ... but many challenges A-RISE

1. Robustness

2. Interpretability
3. Bias & Fairness
4. Reproducibility

IS THERE A REPRODUCIBILITY CRISIS?

% 52%
Don'tknow  Yes, a significant crisis

GPT-3 medical chatbot tells
suicidal test patient to kill
themselves

Rescarchers experamenting with GPT-3, the Al teat-
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Research@LIONS: Theory and Methodology
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o Optimization: Scalable robust/ distributed/federated/game theoretic, limits of algorithms, online
o Deep learning: Sample complexity, architecture design, optimization formulations

o GenAl: GANs, Langevin Dynamics (e.g., diffusion models), mixture of expert models

o Reinforcement learning: Inverse RL, imitation learning, robust RL

o Trust but verify: Lipschitz constant estimation, decision verification
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Research@LIONS: Theory and Methodology
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o Optimization: Scalable robust/ distributed/federated/game theoretic, limits of algorithms, online
o Deep learning: Sample complexity, architecture design, optimization formulations

o GenAl: GANs, Langevin Dynamics (e.g., diffusion models), mixture of expert models

o Reinforcement learning: Inverse RL, imitation learning, robust RL

o Trust but verify: Lipschitz constant estimation, decision verification

Highlight: Robustness
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Why do we need robustness?

TXAINING
PATA
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Why do we need robustness?
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Robustness meets the adversaries
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Robustness meets the adversaries

»

»* %
»* %
* %
* %

Saadatpanah, Shafahi

and Goldstein.
(ICML 2020) I | \FLO
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Today: “Basic” robust machine learning

min max ®(x,y)
xXEX yEY

o A seemingly simple optimization formulation
o Critical in machine learning with many applications

> Adversarial examples and training
> Generative adversarial networks

> Robust reinforcement learning
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Warm up: Flexibility of the template

®* = min max ®(x,y) (argmin,argmax — x*,y*)
XEX yeEY
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Warm up: Flexibility of the template

®* = min max ®(x,y) (argmin,argmax — x*,y*)

xeX y:yey
f(x)
f*= min f(x) (argmin — x*)
X:XEX
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Warm up: Flexibility of the template

®* = min max ®(x,y) (argmin,argmax — x*,y*)

xeX y:yey
f(x)
f*= min f(x) (argmin — x*)
X:XEX

o (eula) In the sequel,
> the set X' is convex
> all convergence characterizations are with feasible iterates x¥ € X
> L-smooth means [|[Vf(x) — Vf(y)|l < L||x —y||,Vx,y € X

> V may refer to the generalized subdifferential
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xeX y:yey
f(x)
f*= min f(x) (argmin — x*)
X:XEX
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> all convergence characterizations are with feasible iterates x¥ € X
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)

The “deep-learning” problem with a neural network hx(a) is given by
1 n
* g [r— . .
x* € argmin § f(x) = =) L(hx(ai), ) ¢
i=1

where X’ denotes the constraints and L is a loss function.

o A single hidden layer neural network with params x := [X1, X2, p1, p2]

activation weight bias bias
4
he(a) = | Xo o X1 +lpa| |+ ]| pe

hidden layer = learned features
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)

The “deep-learning” problem with a neural network hx(a) is given by

n
1
* ; R § N b
x Eargfg} f(x) = - L(hx(a;),b;) o,
i=1

where X’ denotes the constraints and L is a loss function.

Adversarial Training

Let hx : R™ — R be a model with parameters x and let {(a;,b;)}! ;, with a; € RP and b; be the
corresponding labels. The adversarial training optimization problem is given by

n n

1 1

5 - § ) —— § L(hx (a; b

m}:n n fi(x) n |:5:I|I}§a|)ée (hx (a; +9),b;)
#=1 i=1

i=

=:fi(x)

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)

1
x* € argmin { f(x) := —
xeX n

The “deep-learning” problem with a neural network hx(a) is given by

> Lihx(@i),b0) ¢
=1

where X’ denotes the constraints and L is a loss function.

Example objectives in different tasks

> minx {% Z?:l [max&ngumge L (hx (a1+5) s bl):l }
> miny {% Z?:l [max,;:“(;‘bge L(hx+s (a;), bl)] }

> miny maXpee[C] nic Z:L:cl [max&llguse L (hx (ar‘—(s) 5 bf)]
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Adversarial training [11].

e-stability training [3],
Sharpness-aware minimization [7].

Class fairness [16].



Basic questions on solution concepts

o Consider the finite sum setting

7= min {160 = %ijfﬂx)}.
j=1

o Goal: Find x* such that Vf(x*) = 0.

g

GOHHEEHE  Rethinking adversarial training | Volkan Cevher; volkan.cevher®@epfl.ch Slide 13/ 42




Basic questions on solution concepts
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7= min {160 = %ijfﬂx)}.
j=1

o Goal: Find x* such that Vf(x*) = 0.
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Vanilla (Minibatch) SGD

Input: Stochastic gradient oracle g, initial point ¥, step size ay,

1.Fork=0,1,...

obtain the (minibatch) stochastic gradient g
update xF1+1  xk — . gk
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Solving the outer problem: Gradient computation

Adversarial Training

Let hx : RP — R be a model with parameters x and let {(a;,b;)}? ;, with a; € RP and b; be the
corresponding labels. The adversarial training optimization problem is given by

n n
)1 =1 . .
m}:n ; Z fl(x) = Z |:5:H}§a|§6 L(hx (az +9), bl)
p=1 3

i=1

=:fi(x)

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.

Question

How can we compute the following stochastic gradient (i.e., E;Vx fi(x) = Vx fi(x) for ¢ ~ Uniform{1,...

5:(|6]|<e

Vi fi(x) := Vx < max L(hx (a; + 9), bl)> ?
o Challenge: It involves differentiating with respect to a maximization.
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Danskin’s Theorem (1966): How do we compute the gradient?

Theorem ([5])
Let S be compact set, ® : RP x S be continuous such that ®(-,y) is differentiable for all y € S, and Vx®(x,y)
be continuous on RP x S. Define

f(x) = max ®(x,y), S*(x) = argmax ®(x,y).
yES yES

Let v € RP, and ||y||2 = 1. The directional derivative D, f(x) of f in the direction -y at X is given by

Dyf(x) = max (v, Vx®(X,y)).
YES* (%)

An immediate consequence

If 0* € argmaxs, |5 <e L(hx (a; + ), b;) is unique, then we have

Vi fi(x) = VxL(hx (a; + %), b;) .
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Optimized perturbations are typically not unique!

T
1
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Figure: (left) Pairwise £2-distances between “optimized” perturbations with different initializations are bounded away from zero.
(right) The losses of multiple perturbations on the same sample concentrate around a value much larger than the clean loss.
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Theoretical foundations

unique 0*

non-unique §*
Vx®(x,0%)  Vxf(x)

descent direction [13]

Published s 4 conference paper # ICLR 2018

% 4+ D(f, ")
TOWARDS DEEP LEARNING MODELS RESISTANT TO
ADVERSARIAL ATTACKS

Aleksander Magry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Viadu®
Departmest of Electrical Eagiseering and Computer Science

Massachusests lnstitute of Technology

Cambridge, MA 02139, USA

madry, amakelov, ludwigs, tsipras, avladu}émit.edu

level gete
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A counterexample

f(x) = max x40 = |x]|.
se[—1,1]

4

y=Ixl
3
2
t

-3 -2 -1 0 1 2 3
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o We have S := [—1,1] and ®(x,d) = x4.

o At x = 0, we have §*(0) = [—1,1].

o We can choose § =1 € §*(0): &(x,1) =x.
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A counterexample

f(x) = max x40 = |x]|.
se[—1,1]

4

y=Ixl
3
2
t

-3 -2 -1 0 1 2 3
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o We have S := [—1,1] and ®(x,d) = x4.

o At x = 0, we have §*(0) = [—1,1].

o We can choose § =1 € §*(0): &(x,1) =x.

> V. ®(0,1) = —1 #0.

> |s —1 a descent direction at x = 07
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Our understanding [Latorre, Krawczuk, Dadi, Pethick, Cevher, ICLR (2023)]

o The corollary in [13] is false (it is subtle!).

o We constructed a counter example & proposed an alternative way (DDi) of computing “the gradient”:

unique 0* non-unique 6*
Vx®(x,0*) Vxf(x) could be ascent direction!

—— DDD H
--- PGD

i
|
|
i
i
|
T
i
|
[
[
i
T
|
i

Tteration Epoch

Figure: Left and middle pane: comparison DDi and PGD ([13]) on a synthetic problem. Right pane: DDi vs PGD on CIFAR10.
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Comparison with the state-of-the-art

0.50 r . : .
—— i A
P e i | 05 ¥ |
0.40 1 QA G b S
= ! . 04
£ 035 - ! 5 1
5 I I g
g I i g DDi-Theory
2030 1 1 £ 03 == PGD-Theory
z i { E —— DDi-BN-NonSmooth
2 0.25 : : 2 —~— DDi-NonSmooth
0.20 | i 0.2 ~+— DDi-NonSmooth-+Mom
o I | PGD-BN-NonSmooth
0.5 |l ! ! 4~ PGD-NonSmooth
I 1 i 0.1 | —#— PGD-NonSmooth+Mom
01077 25 50 75 1(‘)0 125 1‘50 175 200 0 25 50 75 1(I)o 125 150 175 200
Epoch Epoch

Figure: (left) PGD vs DDi on CIFARL1O0, in a setting covered by theory. (right) An ablation testing the effect of adding back the
elements not covered by theory (BN,ReLU,momentum).
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Figure: (left) PGD vs DDi on CIFARL1O0, in a setting covered by theory. (right) An ablation testing the effect of adding back the

elements not covered by theory (BN,ReLU,momentum).

DDi + Graduate Student Descent may improve things (performance or catastrophic overfitting)?
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Out of the frying pan into the fire
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Original Formulation of Adversarial Training (1)
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Original Formulation of Adversarial Training (1)

which loss L7
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Original Formulation of Adversarial Training (1)

min E ST Loi(hx (a4 9),b)
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Original Formulation of Adversarial Training (I1)

min E ST Loi(hx (a4 9), b)]
min E ST Lce(hy (a+6), b)}
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Surrogate-based optimization for Risk Minimization

Comparison of Loss Functions

— 01 Loss
— Hinge Loss

=== Log Loss

= Squared Hinge Loss
= = Modified Huber Loss

L(hx(a), b)

0
hx(a)-b
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Surrogate-based optimization for Risk Minimization

Comparison of Loss Functions

—0-1 LoSS
— Hinge Loss
Log Loss
w— Squared Hinge Loss
= = Modified Huber Loss

L(hx(a), b)
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Adversary maximizes an upper bound (1)

Lo (hx(a +6.0) < max Leg (hx(a +8).)
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Adversary maximizes an upper bound (I1)

5( 0 62B 588

AN L5,

A AN L%
4 L

V

LLB
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Why maximizing cross-entropy leads to weak adversaries

i B B e Y

(.49, .51, 0, 0)

+ .
/ LCE(hx (a+6A),l-;,\) =1.18

(.26, .24, .25, .25)

LCE(hx (a + 53), 4;!‘) =1.38

"™
a 1l

Rethinking adversarial training | Volkan Cevher; volkan.cevher@epfl.ch Slide 27/ 42 EPFL



Adversary’s problem can be “solved” without using surrogates

Theorem (Reformulation of the Adversary's problem)

0" € argmaxmax hy(a+9); — hx(a+ ), =

&:f8|<e TP
0" € argmax Lgi(x,a+ 4, b)
8:(|6][<e
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Bilevel Optimization [Robey,* Latorre,* Pappas, Hassani, Cevher(2023)]*

o Best targeted attack (BETA) optimization formulation:

1 n
min— > Lcg(x, a; + 5Zj*a b;)

XexX n i—1
such that §7; € argmax hx(a; +8); — hx(a; + )y,
’ 9: [ <e
j* € argmax hx(al- + 52’,]’*)]’ — hx(a@' + 51',]'*)]01.
jelK]—{b;}

Ihttps://infoscience.epfl.ch/record/302995 or https://tinyurl.com/33yup77v
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Bilevel Optimization [Robey,* Latorre,* Pappas, Hassani, Cevher(2023)]*

o Best targeted attack (BETA) optimization formulation:

1 n
min— Y Lce(x,a; + 5Zj*a b;)

XexX n i—=1
such that §7; € argmax hx(a; +8); — hx(a; + )y,
’ 9: [ <e
j* € argmax hx(al- + 52’,]’*)]’ — hx(a@' + 6i,j*)bi
jelK]—{b;}

Best paper award at ICML AdvML 2023

Ihttps://infoscience.epfl.ch/record/302995 or https://tinyurl.com/33yup77v
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Practical Consequences of the Bilevel Formulation (1)

Figure: Learning curves of PGD°-AT (Left) and BETAC-AT

=== Train Robust === Train Clean

e Test Robust e Test Clean
5
Q
g
g 50
<
25
0 50 100
Epoch
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Practical Consequences of the Bilevel Formulation (1)

Figure: Learning curves of PGD-AT (Left) and BETAY-AT (Right). Robust accuracy estimated with PGD2°

=== Train Robust === Train Clean e Train Robust e==== Train Clean
e Test Robust e Test Clean e Test Robust e Test Clean

5 5

Q Q

< <

3 5

350 350 '

< <

25 25
0 50 100 0 50 100
Epoch Epoch
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Practical Consequences of the Bilevel Formulation (1)

Figure: Learning curves of PGD-AT (Left) and BETAY-AT (Right). Robust accuracy estimated with PGD2°

=== Train Robust === Train Clean e Train Robust e==== Train Clean

e Test Robust e Test Clean e Test Robust e Test Clean

5 5
Q Q
& 5
350 350
< <

25 25

0 50 100 0 50 100
Epoch Epoch

No Robust Overfitting occurs!
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Practical Consequences of the Bilevel Formulation

Table: Adversarial performance on CIFAR-10.

Training Test accuracy

algorithm Clean FGSM PGD10 PGD#0 BETALO APGD
Best Last Best Last Best Last Best Last Best Last Best Last
FGSM 81.96 75.43 94.26 94.22 4264 149 4266 162 4030 0.04 4156  0.00
PGD1'0 83.71 83.21 51.98 47.39 46.74 3990 4591 3945 4364 4021 4436 42.62
TRADES'®  81.64 81.42 5240 51.31 47.85 4231 47.76 4292 4431 4097 4334 4133
MART10 7880 77.20 53.84 53.73 49.08 41.12 4841 4155 4481 4122 4500 42.90
BETA-AT®  87.02 86.67 51.22 51.10 44.02 4322 43.94 4256 4262 4261 41.44 41.02
BETA-AT!0 8537 8530 51.42 51.11 4567 4539 4522 4500 4454 4436 4432 4412
BETA-AT20 8211 81.72 54.01 53.99 49.96 48.67 49.20 48.70 46.91 4590 4527 4525
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Another minimax example: Generative adversarial networks (GANs)

o Ingredients:
> fixed noise distribution pg (e.g., normal)
> target distribution fi,, (natural images)
> X parameter class inducing a class of functions (generators)

> Y parameter class inducing a class of functions (dual variables)

Wasserstein GANs formulation [1]

Define a parameterized function dy(a), where y € ) such that dy(a) is 1-Lipschitz. In this case, the
Wasserstein GAN training problem is given by

min (r;lg; oy, ldy(a)] = Burpy, [dy<hx<w>>1> . (1)

This problem is already captured by the template minyec x maxycy ®(x,y). Note that the original problem is a
direct non-smooth minimization problem and the Rubinstein-Kantarovic duality results in the minimax template.

Remarks: o Cannot solve in a manner similar to adversarial training a la Danskin. Need a direct approach.
o Scalability, mode collapse, catastrophic forgetting. Heuristics galore!

o Enforce Lipschitz constraint weight clipping, gradient penalty, spectral normalization [1, 9, 15].
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Abstract minmax formulation

Minimax formulation

min max ®(x,y), 2
min max (x,y) (2)

where
> & s differentiable and nonconvex in x and nonconcave in y,

> The domain is unconstrained, specifically X = R™ and ) = R".

o Key questions:

1. Where do the algorithms converge?

2. When do the algorithm converge?
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Solving the minimax problem: Solution concepts

o Consider the unconstrained setting:

®* = min max ®(x,y)
x y

o Goal: Find an LNE point (x*,y™).

Rethinking adversarial training | Volkan Cevher; volkan.cevher@epfl.ch

Definition (Local Nash Equilibrium)

A pure strategy (x*,y*) is called a local Nash equilibrium if
P (x%,y) SO (x%,y") <2 (x,y7) (LNE)

for all x and y within some neighborhood of x* and y*, i.e.,
|[x —x*|| < e and ||y — y*|| < e for some e > 0.
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Abstract minmax formulation

Minimax formulation

min max ®(x,y), 3
e y) ®3)

where
> & s differentiable and nonconvex in x and nonconcave in y,

> The domain is unconstrained, specifically X = R™ and Y = R".

o Key questions:
1. Where do the algorithms converge?

2. When do the algorithm converge?

A buffet of negative results [6]

“Even when the objective is a Lipschitz and smooth differentiable function, deciding whether a min-max point
exists, in fact even deciding whether an approximate min-max point exists, is NP-hard. More importantly, an
approximate local min-max point of large enough approximation is guaranteed to exist, but finding one such
point is PPAD-complete. The same is true of computing an approximate fixed point of the (Projected) Gradient
Descent/Ascent update dynamics.”
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Basic algorithms for minimax
o Given minye x maxycy ®(x,y), define V(z) = [VxP(x,y), —VyP(x,y)] with z = [x, y].

® Critical point

Figure: Trajectory of different algorithms for a simple bilinear game min, max, xy.

o (In)Famous algorithms o EG and OGDA are approximations of the PPM
> Gradient Descent Ascent (GDA) > ZFHl = zF Vi (2F).
> Proximal point method (PPM) [18, 8] » zFt! =2zF —aV(zFtH!).
> Extra-gradient (EG) [12] » zFtl =2k — aV(z" — aV(zF)).
> Optimistic GDA (OGDA) [19, 14] > zFT!l =2F — a2V (z*) — V(zF71)].
> Reflected-Forward-Backward-Splitting (RFBS) [4] > zF1T1 =zF — aV(22F — zF~1).
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Where do the algorithms converge?
o Recall: Given minyecx maxycy ®(x,y), define V(z) = [Vx®(x,y), —Vy®(x,y)] with z = [x,y].
o Given V(z), define stochastic estimates of V(z, () = V(z) 4+ U(z, (), where

> U(z,() is a bias term,

> We often have unbiasedness: EU(z,() =0,

» The bias term can have bounded moments,

> We often have bounded variance: P(||U(z,() || >t) < 2expf% for o > 0.
o An abstract template for generalized Robbins-Monro schemes, dubbed as .A:

2Pt =2k — akV(zk, Ck)

The dessert section in the buffet of negative results: [10]

1. Bounded trajectories of A always converge to an internally chain-transitive (ICT) set.

2. Trajectories of A may converge with arbitrarily high probability to spurious attractors that contain no
critical point of ®.
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Minimax is more difficult than just optimization [10]

o Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [2].

> For optimization, {attracting ICT} = {solutions}

> For minimax, {attracting ICT} = {solutions} U {spurious sets}

o “Almost” bilinear # bilinear:

1 1
(z,y) = zy + ep(x), d(z) = 5902 _ Zm4

i3 -ib -05 o0 05 10 15

x
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o The “forsaken” solutions:

B(y,) = y(e—0.5) +6()~9(x), 6(u) = Tu*—Sut+cu
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Minimax is more difficult than just optimization [10]

o Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [2].

> For optimization, {attracting ICT} = {solutions}

> For minimax, {attracting ICT} = {solutions} U {spurious sets}
o "Almost” bilinear # bilinear: o The “forsaken” solutions:

O(e,) =2y + 0(2),0@) = £a7 — 1ot Blyya) = y(—05)+0(y)—6(2), p(u) = JuP—Tul

15
1.0
0.5
0.0
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@ Stable critical point

@ Unstable critical point
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When do the algorithms converge?

Assumption (weak Minty variational inequality)

For some p € R, weak MVI implies

(V(z),z —z*) > p|V(2)||?, forallzcR™.  (4)

o A variant EG+ converges when p > —i
» Diakonikolas, Daskalakis, Jordan, AISTATS 2021.

o It still cannot handle the examples of [10].

o Complete picture under weak MVI (ICLR'22 and '23)

> Pethick, Lalafat, Patrinos, Fercoq, and Cevher.
constrained and regularized settings with p > f%
matching lower bounds

stochastic variants handling the examples of [10]

vV v VvYyYy

adaptive variants handling the examples of [10]
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—-V(z)

Figure: The operator V(z) is allowed to point away from
the solution by some amount when p is negative.
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GANs with SEG+ [17]

Fréchet Inception distance

Figure: A performance comparison of GAN training by Adam, EG with stochastic gradients, and SEG+.
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Robustness of the worst-performing class [16]
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Figure: Robust test accuracy of (a) Empirical Risk Minimization and (b) the class focused online learning.

Code: © https://github.com/LIONS-EPFL/class-focused-online-learning-code
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Take home messages

o Even the simplified view of robust & adversarial ML is challenging

o min-max-type has spurious attractors with no equivalent concept in min-type

o Not all step-size schedules are considered in our work: Possible to "“converge” under some settings
o Other successful attempts! consider “mixed Nash” concepts?

HalfCheetah-v2
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0s 075 10 15 20
Relative mass.

o Existing theory and methods for adversarial training is wrong!

1Y—P. Hsieh, C. Liu, and V. Cevher, “Finding mixed Nash equilibria of generative adversarial networks,” International Conference on Machine Learning, 2019.

2k Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics,” NeurlPS, 2020
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Take home messages

o Even the simplified view of robust & adversarial ML is challenging

o min-max-type has spurious attractors with no equivalent concept in min-type

o Not all step-size schedules are considered in our work: Possible to "“converge” under some settings
o Other successful attempts! consider “mixed Nash” concepts?
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o Existing theory and methods for adversarial training is wrong! ... SAM too...

1Y—P. Hsieh, C. Liu, and V. Cevher, “Finding mixed Nash equilibria of generative adversarial networks,” International Conference on Machine Learning, 2019.

2k Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics,” NeurlPS, 2020
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