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Preface: A new landscape for research

¶ My research:
I Optimization
I Deep Learning
I Reinforcement Learning

¶ My current courses:
I Mathematics of Data
I Reinforcement Learning
I Online Learning in Games
I Advanced Topics in ML

Artificial Intelligence

Machine Learning

Deep Learning

Generative AI

LLM/VLMs

GPT-X

...
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GenAI as an example
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Let’s work backwards with GenAI as a running example

¶ What do customers want?

¶ What do customers care about?
I Response speed (inference), availability, cost...
I Quality of the answers (correct, fair, unbiased, aligned, robust,...)
I Personalization, privacy,...
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The loop now works ... but many challenges A-RISE
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Research@LIONS: Theory and Methodology

¶ Optimization: Scalable robust/ distributed/federated/game theoretic, limits of algorithms, online

¶ Deep learning: Sample complexity, architecture design, optimization formulations

¶ GenAI: GANs, Langevin Dynamics (e.g., di�usion models), mixture of expert models

¶ Reinforcement learning: Inverse RL, imitation learning, robust RL

¶ Trust but verify: Lipschitz constant estimation, decision verification

Highlight: Robustness
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Why do we need robustness?
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Robustness meets the adversaries

+0.01x =

+18
safe

+18
safe

+0.01x =

NFL©
OK

NFL©
OK
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Robustness meets the adversaries

Yuan et al. (2019)

+0.01x =

+18
safe

+18
safe

+0.01x =

NFL©
OK

NFL©
OKSaadatpanah, Shafahi 

and Goldstein.
(ICML 2020)
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Today: “Basic” robust machine learning

min
xœX

max
yœY

�(x, y)

¶ A seemingly simple optimization formulation

¶ Critical in machine learning with many applications

I Adversarial examples and training
I Generative adversarial networks
I Robust reinforcement learning
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Warm up: Flexibility of the template

�ı = min
xœX

max
yœY

�(x, y) (argmin, argmax æ xı, yı)

fı = min
x:xœX

f(x) (argmin æ xı)

¶ (eula) In the sequel,

I the set X is convex
I all convergence characterizations are with feasible iterates xk œ X

I L-smooth means ÎÒf(x) ≠ Òf(y)Î Æ LÎx ≠ yÎ, ’x, y œ X

I Ò may refer to the generalized subdi�erential
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The “deep-learning” problem with a neural network hx(a) is given by

xı œ arg min
xœX

I
f(x) := 1

n

nÿ

i=1

L(hx(ai), bi)

J
,

where X denotes the constraints and L is a loss function.

¶ A single hidden layer neural network with params x := [X1, X2, µ1, µ2]

hx(a) :=

C

X2

D
activation`̆

‡

Q

ccccca

weight
¿

C

X1

D
input

¿
C

a

D
+

bias
¿

C
µ1

D

R

dddddb

 ̧                                                     ̊  ̇                                                     ̋

hidden layer = learned features

+

bias
¿

C
µ2

D
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The “deep-learning” problem with a neural network hx(a) is given by

xı œ arg min
xœX

I
f(x) := 1

n

nÿ

i=1

L(hx(ai), bi)

J
,

where X denotes the constraints and L is a loss function.

Adversarial Training
Let hx : Rn æ R be a model with parameters x and let {(ai, bi)}n

i=1, with ai œ Rp and bi be the
corresponding labels. The adversarial training optimization problem is given by

min
x

Y
__]

__[

1
n

nÿ

i=1

fi(x) := 1
n

nÿ

i=1

5
max

”:Î”ÎÆ‘
L(hx (ai + ”), bi)

6

 ̧                                     ̊  ̇                                     ̋

=:fi(x)

Z
__̂

__\
.

Note that L is not continuously di�erentiable due to ReLU, max-pooling, etc.
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The “deep-learning” problem with a neural network hx(a) is given by

xı œ arg min
xœX

I
f(x) := 1

n

nÿ

i=1

L(hx(ai), bi)

J
,

where X denotes the constraints and L is a loss function.

Example objectives in di�erent tasks
I minx

) 1
n

qn

i=1
#
max”:Î”ÎŒÆ‘ L (hx (ai+”) , bi)

$*
Adversarial training [11].

I minx
) 1

n

qn

i=1
#
max”:Î”Î2Æ‘ L(hx+” (ai), bi)

$*
‘-stability training [3],

Sharpness-aware minimization [7].
I minx maxbcœ[C]

1
nc

qnc

i=1
#
max”:Î”ÎÆ‘ L

!
hx (ai+”) , bc

i

"$
Class fairness [16].
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Basic questions on solution concepts

¶ Consider the finite sum setting

fı := min
xœRp

Ó
f(x) := 1

n

nÿ

j=1

fj(x)
Ô

.

¶ Goal: Find xı such that Òf(xı) = 0.

Vanilla (Minibatch) SGD
Input: Stochastic gradient oracle g, initial point x0, step size –k

1. For k = 0, 1, . . .:
obtain the (minibatch) stochastic gradient gk

update xk+1 Ω xk ≠ “kgk
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Solving the outer problem: Gradient computation

Adversarial Training
Let hx : Rp æ R be a model with parameters x and let {(ai, bi)}n

i=1, with ai œ Rp and bi be the
corresponding labels. The adversarial training optimization problem is given by

min
x

Y
__]

__[

1
n

nÿ

i=1

fi(x) := 1
n

nÿ

i=1

5
max

”:Î”ÎÆ‘
L(hx (ai + ”), bi)

6

 ̧                                     ̊  ̇                                     ̋

=:fi(x)

Z
__̂

__\
.

Note that L is not continuously di�erentiable due to ReLU, max-pooling, etc.

Question
How can we compute the following stochastic gradient (i.e., EiÒxfi(x) = Òxfi(x) for i ≥ Uniform{1, . . . , n}):

Òxfi(x) := Òx

3
max

”:Î”ÎÆ‘
L(hx (ai + ”), bi)

4
?

¶ Challenge: It involves di�erentiating with respect to a maximization.
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Danskin’s Theorem (1966): How do we compute the gradient?

Theorem ([5])
Let S be compact set, � : Rp ◊ S be continuous such that �(·, y) is di�erentiable for all y œ S, and Òx�(x, y)
be continuous on Rp ◊ S. Define

f(x) B max
yœS

�(x, y), Sı(x) B arg max
yœS

�(x, y).

Let “ œ Rp, and Î“Î2 = 1. The directional derivative D“f(x̄) of f in the direction “ at x̄ is given by

D“f(x̄) = max
yœSı(x̄)

È“, Òx�(x̄, y)Í.

An immediate consequence
If ”ı œ arg max”:Î”ÎÆ‘ L(hx (ai + ”), bi) is unique, then we have

Òxfi(x) = ÒxL(hx (ai + ”ı), bi) .

Rethinking adversarial training | Volkan Cevher; volkan.cevher@epfl.ch Slide 15/ 42



Optimized perturbations are typically not unique!
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Figure: (left) Pairwise ¸2-distances between “optimized” perturbations with di�erent initializations are bounded away from zero.
(right) The losses of multiple perturbations on the same sample concentrate around a value much larger than the clean loss.
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Theoretical foundations

?

unique ”ı non-unique ”ı

Òx�(x, ”ı) Òxf(x) descent direction [13]

level sets

xk
�f(xk)

pk
xk + D(f, xk)
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A counterexample

f(x) B max
”œ[≠1,1]

x” = |x| .

¶ We have S B [≠1, 1] and �(x, ”) = x”.

¶ At x = 0, we have Sı(0) = [≠1, 1].

¶ We can choose ” = 1 œ Sı(0): �(x, 1) = x.

I ≠Òx�(0, 1) = ≠1 , 0.
I Is ≠1 a descent direction at x = 0?
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Our understanding [Latorre, Krawczuk, Dadi, Pethick, Cevher, ICLR (2023)]

¶ The corollary in [13] is false (it is subtle!).

¶ We constructed a counter example & proposed an alternative way (DDi) of computing “the gradient”:

unique ”ı non-unique ”ı

Òx�(x, ”ı) Òxf(x) could be ascent direction!
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Figure: Left and middle pane: comparison DDi and PGD ([13]) on a synthetic problem. Right pane: DDi vs PGD on CIFAR10.

Rethinking adversarial training | Volkan Cevher; volkan.cevher@epfl.ch Slide 19/ 42



Comparison with the state-of-the-art
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Figure: (left) PGD vs DDi on CIFAR10, in a setting covered by theory. (right) An ablation testing the e�ect of adding back the
elements not covered by theory (BN,ReLU,momentum).

DDi + Graduate Student Descent may improve things (performance or catastrophic overfitting)?
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elements not covered by theory (BN,ReLU,momentum).

DDi + Graduate Student Descent may improve things (performance or catastrophic overfitting)?
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Out of the frying pan into the fire
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Original Formulation of Adversarial Training (I)

minx E
S

U max
”:Î”ÎÆ‘

L(hx (a + ”), b)
T

V

which loss L?
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Original Formulation of Adversarial Training (II)

minx E
S

U max
”:Î”ÎÆ‘

L01(hx (a + ”), b)
T

V

minx E
S

U max
”:Î”ÎÆ‘

LCE(hx (a + ”), b)
T

V
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Surrogate-based optimization for Risk Minimization

E [L01(hxı (a + ”), b)] Æ minx E [LCE (hx(a + ”), b)]
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Surrogate-based optimization for Risk Minimization

E [L01(hxı (a + ”), b)] Æ minx E [LCE (hx(a + ”), b)]
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Adversary maximizes an upper bound (I)

L01 (hx(a + ”ı), b) Æ max
”:Î”ÎÆ‘

LCE (hx(a + ”), b)
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Adversary maximizes an upper bound (II)

δ
LB

� δ
UB

�

�(δ
UB

� )

�(δ
LB

� )

�

�
LB �

UB

δ(0)
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Why maximizing cross-entropy leads to weak adversaries

+

+

=

=

! " # $

(.49, .51,    0,    0)

(.26, .24,  .25,  .25)
!

!
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Adversary’s problem can be “solved” without using surrogates

Theorem (Reformulation of the Adversary’s problem)

”ı œ arg max
”:Î”ÎÆ‘

max
j,b

hx(a + ”)j ≠ hx(a + ”)b ∆

”ı œ arg max
”:Î”ÎÆ‘

L01(x, a + ”, b)
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Bilevel Optimization [Robey,ú Latorre,ú Pappas, Hassani, Cevher(2023)]1

¶ Best targeted attack (BETA) optimization formulation:

minxœx
1
n

nÿ

i=1
LCE(x, ai + ”ı

i,jı, bi)

such that ”ı
i,j œ arg max

”: Î”ÎÆ‘
hx(ai + ”)j ≠ hx(ai + ”)bi

jı œ arg max
jœ[K]≠{bi}

hx(ai + ”i,jı)j ≠ hx(ai + ”i,jı)bi

Best paper award at ICML AdvML 2023

1
https://infoscience.epfl.ch/record/302995 or https://tinyurl.com/33yup77v
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Practical Consequences of the Bilevel Formulation (I)

Figure: Learning curves of PGD10-AT (Left) and BETA10-AT

(Right). Robust accuracy estimated with PGD20

0 50 100
Epoch

25

50

75

A
cc

ur
ac

y

Train Robust
Test Robust

Train Clean
Test Clean

No Robust Overfitting occurs!

Rethinking adversarial training | Volkan Cevher; volkan.cevher@epfl.ch Slide 30/ 42



Practical Consequences of the Bilevel Formulation (I)

Figure: Learning curves of PGD10-AT (Left) and BETA10-AT (Right). Robust accuracy estimated with PGD20

0 50 100
Epoch

25

50

75

A
cc

ur
ac

y

Train Robust
Test Robust

Train Clean
Test Clean

0 50 100
Epoch

25

50

75

A
cc

ur
ac

y

Train Robust
Test Robust

Train Clean
Test Clean

No Robust Overfitting occurs!

Rethinking adversarial training | Volkan Cevher; volkan.cevher@epfl.ch Slide 30/ 42



Practical Consequences of the Bilevel Formulation (I)

Figure: Learning curves of PGD10-AT (Left) and BETA10-AT (Right). Robust accuracy estimated with PGD20

0 50 100
Epoch

25

50

75

A
cc

ur
ac

y

Train Robust
Test Robust

Train Clean
Test Clean

0 50 100
Epoch

25

50

75

A
cc

ur
ac

y

Train Robust
Test Robust

Train Clean
Test Clean

No Robust Overfitting occurs!
Rethinking adversarial training | Volkan Cevher; volkan.cevher@epfl.ch Slide 30/ 42



Practical Consequences of the Bilevel Formulation

Table: Adversarial performance on CIFAR-10.

Training
algorithm

Test accuracy
Clean FGSM PGD10 PGD40 BETA10 APGD

Best Last Best Last Best Last Best Last Best Last Best Last
FGSM 81.96 75.43 94.26 94.22 42.64 1.49 42.66 1.62 40.30 0.04 41.56 0.00
PGD10 83.71 83.21 51.98 47.39 46.74 39.90 45.91 39.45 43.64 40.21 44.36 42.62

TRADES10 81.64 81.42 52.40 51.31 47.85 42.31 47.76 42.92 44.31 40.97 43.34 41.33
MART10 78.80 77.20 53.84 53.73 49.08 41.12 48.41 41.55 44.81 41.22 45.00 42.90

BETA-AT5 87.02 86.67 51.22 51.10 44.02 43.22 43.94 42.56 42.62 42.61 41.44 41.02
BETA-AT10 85.37 85.30 51.42 51.11 45.67 45.39 45.22 45.00 44.54 44.36 44.32 44.12
BETA-AT20 82.11 81.72 54.01 53.99 49.96 48.67 49.20 48.70 46.91 45.90 45.27 45.25
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Another minimax example: Generative adversarial networks (GANs)
¶ Ingredients:
I fixed noise distribution p� (e.g., normal)
I target distribution µ̂n (natural images)
I X parameter class inducing a class of functions (generators)
I Y parameter class inducing a class of functions (dual variables)

Wasserstein GANs formulation [1]
Define a parameterized function dy(a), where y œ Y such that dy(a) is 1-Lipschitz. In this case, the
Wasserstein GAN training problem is given by

min
xœX

3
max
yœY

Ea≥µ̂n [dy(a)] ≠ EÊ≥p� [dy(hx(Ê))]
4

. (1)

This problem is already captured by the template minxœX maxyœY �(x, y). Note that the original problem is a
direct non-smooth minimization problem and the Rubinstein-Kantarovic duality results in the minimax template.

Remarks: ¶ Cannot solve in a manner similar to adversarial training a la Danskin. Need a direct approach.
¶ Scalability, mode collapse, catastrophic forgetting. Heuristics galore!
¶ Enforce Lipschitz constraint weight clipping, gradient penalty, spectral normalization [1, 9, 15].
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Abstract minmax formulation

Minimax formulation

min
xœX

max
yœY

�(x, y), (2)

where
I � is di�erentiable and nonconvex in x and nonconcave in y,
I The domain is unconstrained, specifically X = Rm and Y = Rn.

¶ Key questions:

1. Where do the algorithms converge?

2. When do the algorithm converge?
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Solving the minimax problem: Solution concepts

¶ Consider the unconstrained setting:

�ı = min
x

max
y

�(x, y)

¶ Goal: Find an LNE point (xı, yı).

Definition (Local Nash Equilibrium)
A pure strategy (xı, yı) is called a local Nash equilibrium if

� (xı, y) Æ � (xı, yı) Æ � (x, yı) (LNE)

for all x and y within some neighborhood of xı and yı, i.e.,
Îx ≠ xıÎ Æ Á and Îy ≠ yıÎ Æ Á for some Á > 0.
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Abstract minmax formulation
Minimax formulation

min
xœX

max
yœY

�(x, y), (3)

where
I � is di�erentiable and nonconvex in x and nonconcave in y,
I The domain is unconstrained, specifically X = Rm and Y = Rn.

¶ Key questions:

1. Where do the algorithms converge?

2. When do the algorithm converge?

A bu�et of negative results [6]
“Even when the objective is a Lipschitz and smooth di�erentiable function, deciding whether a min-max point

exists, in fact even deciding whether an approximate min-max point exists, is NP-hard. More importantly, an

approximate local min-max point of large enough approximation is guaranteed to exist, but finding one such

point is PPAD-complete. The same is true of computing an approximate fixed point of the (Projected) Gradient

Descent/Ascent update dynamics.”
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Basic algorithms for minimax
¶ Given minxœX maxyœY �(x, y), define V (z) = [Òx�(x, y), ≠Òy�(x, y)] with z = [x, y].

Figure: Trajectory of di�erent algorithms for a simple bilinear game minx maxy xy.

¶ (In)Famous algorithms
I Gradient Descent Ascent (GDA)
I Proximal point method (PPM) [18, 8]
I Extra-gradient (EG) [12]
I Optimistic GDA (OGDA) [19, 14]
I Reflected-Forward-Backward-Splitting (RFBS) [4]

¶ EG and OGDA are approximations of the PPM
I zk+1 = zk ≠ –V (zk).
I zk+1 = zk ≠ –V (zk+1).
I zk+1 = zk ≠ –V (zk ≠ –V (zk)).
I zk+1 = zk ≠ –[2V (zk) ≠ V (zk≠1)].
I zk+1 = zk ≠ –V (2zk ≠ zk≠1).
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Where do the algorithms converge?

¶ Recall: Given minxœX maxyœY �(x, y), define V (z) = [Òx�(x, y), ≠Òy�(x, y)] with z = [x, y].

¶ Given V (z), define stochastic estimates of V (z, ’) = V (z) + U(z, ’), where

I U(z, ’) is a bias term,
I We often have unbiasedness: EU(z, ’) = 0,
I The bias term can have bounded moments,

I We often have bounded variance: P (Î U(z, ’) Î Ø t) Æ 2 exp ≠ t2
2‡2 for ‡ > 0.

¶ An abstract template for generalized Robbins-Monro schemes, dubbed as A:

zk+1 = zk ≠ –kV (zk, ’k).

The dessert section in the bu�et of negative results: [10]
1. Bounded trajectories of A always converge to an internally chain-transitive (ICT) set.
2. Trajectories of A may converge with arbitrarily high probability to spurious attractors that contain no

critical point of �.
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Minimax is more di�cult than just optimization [10]
¶ Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [2].

I For optimization, {attracting ICT} © {solutions}
I For minimax, {attracting ICT} © {solutions} fi {spurious sets}

¶ “Almost” bilinear , bilinear:

�(x, y) = xy + ‘„(x), „(x) = 1
2

x2 ≠
1
4

x4

¶ The “forsaken” solutions:

�(y, x) = y(x≠0.5)+„(y)≠„(x), „(u) = 1
4

u2≠
1
2

u4+ 1
6

u6
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When do the algorithms converge?

Assumption (weak Minty variational inequality)
For some fl œ R, weak MVI implies

ÈV (z), z ≠ zıÍ > flÎV (z)Î2, for all z œ Rn. (4)

¶ A variant EG+ converges when fl > ≠ 1
8L

I Diakonikolas, Daskalakis, Jordan, AISTATS 2021.
¶ It still cannot handle the examples of [10].

z�z

�V(z)

Figure: The operator V (z) is allowed to point away from
the solution by some amount when fl is negative.

¶ Complete picture under weak MVI (ICLR’22 and ’23)
I Pethick, Lalafat, Patrinos, Fercoq, and Cevher.
I constrained and regularized settings with fl > ≠ 1

2L

I matching lower bounds
I stochastic variants handling the examples of [10]
I adaptive variants handling the examples of [10]
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GANs with SEG+ [17]

Figure: A performance comparison of GAN training by Adam, EG with stochastic gradients, and SEG+.
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Robustness of the worst-performing class [16]

(a) (b)

Figure: Robust test accuracy of (a) Empirical Risk Minimization and (b) the class focused online learning.

Code: https://github.com/LIONS-EPFL/class-focused-online-learning-code
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Take home messages

¶ Even the simplified view of robust & adversarial ML is challenging

¶ min-max-type has spurious attractors with no equivalent concept in min-type

¶ Not all step-size schedules are considered in our work: Possible to “converge” under some settings

¶ Other successful attempts1 consider “mixed Nash” concepts2

¶ Existing theory and methods for adversarial training is wrong!

... SAM too...

1Y-P. Hsieh, C. Liu, and V. Cevher, “Finding mixed Nash equilibria of generative adversarial networks,” International Conference on Machine Learning, 2019.
2K. Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics,” NeurIPS, 2020.
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