Volkan Cevher

Associate Professor, EPFL, Switzerland

Title: Adversarial Training Should Be Cast as a Non-Zero-Sum Game

Volkan Cevher


One prominent approach toward resolving the adversarial vulnerability of deep neural networks is the two-player zero-sum paradigm of adversarial training, in which predictors are trained against adversarially-chosen perturbations of data. Despite the promise of this approach, algorithms based on this paradigm have not engendered sufficient levels of robustness and suffer from pathological behavior like robust overfitting.

To understand this shortcoming, we first show that the commonly used surrogate-based relaxation used in adversarial training algorithms voids all guarantees on the robustness of trained classifiers. The identification of this pitfall informs a novel non-zero-sum bilevel formulation of adversarial training, wherein each player optimizes a different objective function.

Our formulation naturally yields a simple algorithmic framework that matches and in some cases outperforms state-of-the-art attacks, attains comparable levels of robustness to standard adversarial training algorithms, and does not suffer from robust overfitting.

About Volkan Cevher

Volkan Cevher received the B.Sc. (valedictorian) in electrical engineering from Bilkent University in Ankara, Turkey, in 1999 and the Ph.D. in electrical and computer engineering from the Georgia Institute of Technology in Atlanta, GA in 2005. He was a Research Scientist with the University of Maryland, College Park, from 2006-2007 and also with Rice University in Houston, TX, from 2008-2009. He was also a Faculty Fellow in the Electrical and Computer Engineering Department at Rice University from 2010-2020. Currently, he is an Associate Professor at the Swiss Federal Institute of Technology Lausanne and an Amazon Scholar. His research interests include machine learning, optimization theory and methods, and automated control. Dr. Cevher is an IEEE Fellow (’24), an ELLIS fellow, and was the recipient of the ICML AdvML Best Paper Award in 2023, Google Faculty Research award in 2018, the IEEE Signal Processing Society Best Paper Award in 2016, a Best Paper Award at CAMSAP in 2015, a Best Paper Award at SPARS in 2009, and an ERC CG in 2016 as well as an ERC StG in 2011.

Donwload Slides